Journal of Global Optimization 10: 1-16, 1997. 1
© 1997 Kluwer Academic Publishers. Printed in the Netherlands.

A Theoretical Approach to Restart
in Global Optimization

MARCO MUSELLI
Istituto per i Circuiti Elettronici, CNR, 16149 Genova, Italy
(email: muselli@ice.ge.cnr.it)

(Received: 12 December 1995; accepted: 23 February 1996)

Abstract. Whilesearching for theglobal minimum of acost functionwehaveoftentodecideif arestart
from adifferent initial point would be more advantageous than continuing current optimization. This
isaparticular case of the efficiency comparison between repeated minimizations and single extended
search having the same total length.

A theoretical approach for the treatment of this general problem forms the subject of the present
paper. A fundamental role is played by the probability of reaching the global minimum, whose
asymptotical behavior allows to provide useful information on the efficiency of repeated trials.

The second part of this work is devoted to a detailed analysis of three optimization algorithms
whose evolution isindependent of the cost function to be minimized: pure random search, grid search
and random walk. These three examples give an interesting validation of the theoretical results and
provide a general procedure which can be employed in the study of more complex optimization
problems.
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1. Introduction

The global optimization of a cost function with several variablesis avaluable way
to obtain a satisfactory solution for awide range of real-world problems (Bazaraa
and Shetty, 1979). For this aim a huge number of different algorithms has been
proposed that attempt to establish a good trade-off between search complexity and
computational burden (Torn and Zilinskas, 1989).

Most of them contain a stochastic component which increases the robustness
of the method and the adaptability to the characteristics of the cost function
(Aluffi-Pentini et a., 1985; Baba, 1979; Boender et al., 1982; Coranaet al., 1988;
Musdlli and Ridella, 1992). In fact, it can be shown that, under mild hypotheses, a
random optimization algorithm is always able to reach the global minimum (within
any arbitrary precision) with probability one when the computing time increases
indefinitely (Devroye, 1976; Solis and Wets, 1981). However, quantitative esti-
mates of the number of iterations required to obtain a satisfactory result are only
givenin particular cases (Dorea, 1983).

A typical execution of astochastic minimization algorithm generally showstwo
consecutive phases. At first the sampled points are characterized by acost function
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value which decreases fast, but subsequently, if the convergence has not already
been reached, the current minimum is rarely updated and apparently the search
continues with poor efficiency.

It isthen interesting to determine, with reference to the problem we are solving,
if and when the optimization process must be restarted from a new initial point.
Clearly, such an action is to be undertaken according to the corresponding prob-
ability of reaching the global minimum of the given cost function. Let us denote
with nj theiteration in which the algorithm execution will be suspended; thenitis
advantageousto begin a new search with length n; if the probability R (n1, n,)
of finding the global minimum during the two consecutive trials is greater than
the probability R(n1 + n2) of reaching the convergence by continuing the initial
search for other n; iterations.

More generally, it can be useful to evaluate the efficiency of executing ¢ trials
havinglengthsny, . .., n, withrespecttoasinglesearchwithnj+- - - +n, iterations.
This analysis has interesting implications in the parallelization of optimization
algorithms. In fact, the simplest way of executing any global minimum search on
aparalel machineis to carry out several different minimizations by assigning to
each processor adifferent starting point. Thus, if we have theoretically proved that
many consecutive searches are more favorable than asingle extended trial, we can
concludethat this simple parallel approach is really efficient.

A theoretical study of thisproblemisreportedin (Kolen, 1988) with referenceto
the employment of optimizationin neural network training. Through aquestionable
proof the general advantage of repeated trials is asserted, whatever optimization
algorithm is considered. Unfortunately, this result is not valid in some practical
cases. consider for example the grid method, in which a set of equidistributed
samples in the cost function domain is analyzed one at a time to find the global
minimum. We can directly conclude that any restart of this algorithm (before the
complete inspection of the set) leads to a loss of information and consequently to
areduction of the total convergence probability. Thus, a single extended search is
aways more efficient when the grid method is applied.

A coherent theoretical approach which allows to obtain general conditions on
theefficiency of repeatedtrialsisthe object of the present paper. Particular attention
will bedevoted to theinfluence of the asymptotical behavior of the probability R(n)
that the considered optimization algorithm convergesto the global minimum of the
given cost function.

An adeguateframework for the problem aboveis contained in section 2 together
with the reduction of the generic analysis for ¢ repeated trials to the special case
t = 2. Section 3 reports the main results and the study of sometypical asymptotical
behaviors of the convergence probability R(n). The thorough analysis of three
optimization methods which do not depend on the cost function to minimize will
be the subject of section 4 and allows to validate the theoretical assertions.
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2. The General Problem

Consider a measurable function f(x) defined on a compact set D C R™, and
denote with Vp the Lebesgue measure of its domain D. Let f* be the global
minimum of f(z) in D; we introduce the following convergence set H:

H={xzeD: f(z)< f"+¢}

being £ > 0 a given tolerance in the determination of the global minimum. Since
the cost function f(x) is measurable by hypothesis, the convergence set H will
also be measurable; et us denote with Vi its Lebesgue measure.

Asonewill notein thefollowing, theresultscontainedin the present paper holds
for different definitions of the convergence set H provided that its measurability
isensured. It is also possible to employ a measure i different from the Lebesgue’s
one; the only basic hypothesis to be verified is that both the domain D and the
convergence set H have non null measure.

Then consider ageneric optimization algorithm A; at every iteration it samples
apoint , € D according to proper choice criteria which depend on the cost
function valuesin the points 1, ..., @,,_1 previousy reached. If ,, € H we say
that the algorithm A has converged in the nth iteration and the sampling is stopped.
By hypothesis, the first point x; is randomly chosen with uniform probability in
the whole domain D.

Let uscall optimization problem = (A, f) the search for the global minimum
f* (or, equivalently, a point of the convergence set H) of the cost function f(x)
done by the algorithm .A. We want to find under what conditionsit is more efficient
making several repeated trials (starting from different randomly chosen initia
pointsin D) than executing a single search with extended length.

For this aim let us denote with Rq(n), n > 0, the probability that the opti-
mization algorithm A reachesthe convergence set H of the cost function f within
the nth iteration. From this definition we obtain that R (n) is a monotonically
increasing sequence of real numbers with the following initial values:

Rq(0) =0, Rq(l)=Vu/Vp (1)

since the first point x4 is randomly chosen in the domain D by the algorithm A
with uniform probability.
Then given ¢ positive integers ni, ..., n;, we want to compare the following
quantities:
— the probability Rg> (n1,...,n:) that the algorithm A converges during ¢ con-
secutive optimizations having length ny, . .., n; respectively and
— the probability Rq(n1 + - - - + n;) that the algorithm A convergesin asingle
global minimum search with nq + - - - + n; iterations.
In this quantitative analysis of repeated trials it is assumed that on the average
every iteration requires the same computing time. When this condition is not
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satisfied proper corrective factors should be applied to the following theoretical
results.

The comparison above can be executed by writing the quantiti eng) (n1,...,my¢)
and Rq(n1 + --- + ny) in terms of the probability Qq(n) that the optimization
algorithm A does not reach the convergence set H within the nth iteration:

QQ(H)ZPQ(:D]_QH,...,QZTLQH):].—RQ(’HJ) (2)

where the subscript 2 remembers that every probability depends on the optimiza-
tion problem we are considering.

Since two subsequent searches for the global minimum are independent each
other, the probability that the convergenceis not reached in ¢ trials is equal to the
product of the probabilities of not finding apoint of A in every single search. Thus
we have

R (ng, ... ,ny) =1 Qa(ny) -+ Qalny) =1— f[ Qa(n). A3)
=1
Furthermore, equation (2) gives
RQ(nl—i----—i—nt)=1—Qn(n1+"'+nt)=1—Qn<zt:nz‘> 4
=1
Then the difference Rg> (n1,...,n¢) — Ro(n1 + - -+ + ny) can be written in the
following way:

R (na, ..., ne) = Ra(na+--- +m) = Qo (an> ~ [ Qalmi) =
i=1 i=1
—1j-1 :
=2_ 1 Qalm) (QQ (Z”l) Qa(nj)Qa ( > m)) =

j=1k=1 i=j7+1
t—15—1 t t

= Z H Qa(nk) Q nj, Z n; | — Rq | nj + Z n; . (5
j=1k=1 i=j+1 i=j+1

But Qq(nk) > 0 for every k; thus, the sign of the terms in the summation is

%i\f/enbythediffe:]enc&Rg)(nj, fﬁlnz) Rg(n]-Jer:Hlni).Inparticular,
if for every j we have

t t
Rg? (n]’, Z nz> > Rq (n]’ + Z nl>
i=j+1 i=j+1
we also obtain

Rg)(nl,...,nt) > Ro(ni+ -+ mny)
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and consequently ¢ repeated trials are more efficient. The oppositeistrue when for
every j

t t
Rg? (n]’, Z nz> < Rq (n]’ + Z nl> .
1=7+1 1=7+1
The original problem can be therefore reduced to the comparison between

the convergence probabilities of two consecutive trials with length n; and n»
respectively and a single extended search having length ny + no.

3. Efficiency Evaluation of Two Consecutive Searches

During the execution of an optimization algorithm it is sometimes necessary to
stop the current trial and restart a new search from a different initial point since
further iterations do not sufficiently improve the probability of reaching the global
minimum of the cost function. Thus, the problem of evaluating the efficiency of
two consecutive searches can be expressed in the following way: at what iteration
n1 iSit advantageousto stop an optimization agorithm and start anew search with
length n, rather than doing a single trials having length ng + n,?

Such a problem is difficult to solve in a general case; a thorough theoretical
treatment can be obtained when we focus on the asymptotical behavior of the
convergence probability R (n). Thisanalysis has however great practical interest;
infact, it allowsto determineif the execution of an optimization algorithm isto be
continued by examining the convergence speed to the global minimum.

For thisaim let us introduce two basic definitions:

DEFINITION 1. An optimization problem € will be called multistart suited if
there exists a positive integer n. such that for every nq > n and every ny we have

Ro(n1+n2) < R? (ng, ny). Itwill be called singlestart suited if Rq (ny + n2) >
R (n1,n2).

Therefore, when we are facing with a multistart suited optimization problem it is
more efficient, after a given iteration n, to stop the execution of the algorithm A
and begin a new search starting from a different initial point. On the contrary, in
singlestart suited optimization problems it is better to continue the current search
if a sufficient number n of iterations has already been carried out.

From (3) and (4) in the case m = 2 we obtain the corresponding definitionsin
terms of the non-convergence probability Qq(n):

Rqo(n1+np) < Rg()z) (n1,n2) <= Qa(n1+ n2) > Qa(n1)Qa(n2)
Rq(ny +np) > Réf) (n1,m2) <= Qa(n1+ n2) < Qa(n1)Qa(n2)

Because of their immediate applicability the inequalities containing the prob-
ability Qq(n) will be preferred for determining the characterization of a given
problem Q.
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We can al so classify optimization problems with regard to the limit value of the
corresponding convergence probability Rq(n):

DEFINITION 2. An optimization problem © will be called certain if lim,_,,
Rq(n) = 1; otherwise it will be called uncertain.

With these premises|et usanalyze the asymptotical behavior of the non-convergence
probability Qq(n) to obtain general information on the efficiency of two repeat-

ed searches for the global minimum. For sake of simplicity, let us remove from

the notation for the probabilities R(n) and Q(n) the explicit dependence on the
optimization problem © we are considering. From the general properties of the
convergenceprobability R(n) we obtainthat Q(n) isadecreasing sequence of rea

numbers. Moreover, by setting « = 1 — Vg /Vp equations (1) gives the following

initial valuesfor Q(n):

QO =1, Q1) =«

it should be observed that 0 < o < 1 since by hypothesis Vi > 0.
Consider at first the class of optimization problemsfor which two repeated trials
and a single extended search have the same efficiency; in these cases we obtain

Q(n1)Q(n2) = Q(n1 + na).

If such arelation isvalid independently of the values assumed by n; and n, we
have

Qn) = Q(1Q(n—1) = (Q(1)*Q(n—2) = (Q(1)" =™ (6)

This non-convergence probability o™ characterizes the only class of optimiza-
tion problemsfor which the execution of two consecutivetrialsisalwaysequivalent
to a single continuative search. As we will find in Section 4, every time the pure
random search method is applied an optimization problem of this kind arises.

It can also beeasily shownthat if Q(n) = a™ (where a can be different from «)
for every n greater than a given positive integer k, repeated trials and single search
are equivalent when both n; and ny are greater than k. Thus we can reasonably
suppose that the non-convergence probability Q(n) = ™ forms in one sense a
boundary between multistart and singlestart suited optimization problems. The
following lemma provides a theoretical validation of this intuitive assertion:

LEMMA 1. If (Q(ng))l/’22 > limsup,_, , ,, Q(n+1)/Q(n) thereexistsa positive
integer & such that for everyni > k we have Q(n1 + n2) < Q(n1)Q(n2).

If (Q(nz))l/"2 < liminf, 100 Q(n + 1)/Q(n) there exists a positive integer
k suchthat Q(n1 + n2) > Q(n1)Q(n2) for everyng > k.

Proof. If we set A = limsup,_,,  Q(n + 1)/Q(n) then for every ¢ > 0
there exists n. > 1 such that Q(n + 1) < (A + €)Q(n) for every n > n.. Teke
€= ((Q(ng))l/’22 —\)/2and set k = n.; for every n; > k we have

Q(n1+n2) <A +6)"2Q(n1) < Q(n1)Q(n2)
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since by hypothesis

Q)™ > ((Q(n2) ™ + ) 2=+

The second assertion of the lemma can be proved in asimilar way.

Unfortunately this lemma binds the evaluation of the efficiency of two consec-
utive searchesto the length n, of the second one. In some cases of great practical
interest such a dependence can be removed.

THEOREM 1. An optimization problemis singlestart suited if lim,,_, 1 Q(n +
1)/Q(n) = 0 and multistart suited when lim,,_, o Q(n + 1)/Q(n) = 1.

Proof. Consider at first the caselim,,_, ;o Q(n +1)/Q(n) = 0; if Q(n2) > 0,
from lemma 1 we obtain Q(n1 + n2) < Q(n1)Q(n2) for n1 not less than a given
integer k. On the other hand, when Q(n2) = Owehaveaso Q(n1+ny) = 0, since
Q(n) is adecreasing sequence.

A similar reasoning holds in the case lim,,_, 1 oo Q(n + 1)/Q(n) = 1; in fact
lemmalgivesQ(ni + np) > Q(n1)Q(n2) since@Q(n2) < 1for every ny > 1.

A direct application of thistheorem givesthe following general result:
COROLLARY 1. Every uncertain optimization problemis multistart suited.

Thus, whenwearefacing with an uncertain optimization problemitismoreefficient
to execute two consecutive trials if one of them runs for a time long enough. A
situation of this kind occurs when we employ a local optimization algorithm to
search for the minimum of a multivariate cost function. Note that corollary 1isin
agreement with practical experience: the global minimum can generally be found
by executing repeated trials starting from different initial points.

Our theoretical study can then be restricted to certain optimization problems:
in this case a complete theoretical analysis of some general types of asymptotical
behaviors of the non-convergence probability Q(n) ispossible. Information on the
efficiency of repeated trials in area application can be obtained by comparing an
estimate of the asymptotical behavior of the current non-convergence probability
Q(n) with proper reference sequences like that contained in the following two
examples.

EXAMPLE 1. Consider the class of optimization problemswhose probability Q(n)
has the following property

Q(n)~n"7 withy >0 (7
where the symbol ‘~" denotes equal asymptotical behavior:

ap ~ b, <— nEToo an/bp =1
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Note that (7) implies lim,,_, .~ Q(n) = 0 for which the corresponding opti-
mization problem is certain; furthermore
Qn+1) lim Qn+l) n7 (n+1)77 _1
nvioe Q(n) moteo () Q) n
for every v > 0. Thus, theorem 1 allowsto assert that al the problems belonging to
this class are multistart suited, independently of the value of the positive exponent
Y-

EXAMPLE 2. A second important class of optimization problemsis characterized
by the following asymptotical behavior of the non-convergence probability Q(n):

Q(n) ~a" withO<a < landy > 0.
In this case we have again

im Q(n)= lim o - 9 _g

Y

n—-+00 n—-+00 a
for which we are considering certain optimization problems. Moreover
Qm+1) . amtr  [lse0<y<d
lim ————= lim ——=qaify=1
n—4o0  Q(n) n—+oo @ 0ify>1

Thus, three different situations can occur:
— when 0 < v < 1the corresponding optimization problem is singlestart suited,
— when vy > 1 the corresponding optimization problem is multistart suited,
— inthe casey = 1therelative efficiency of two repeated trials depends on the
value of Q)(ny) according to lemma 1.

4. Analysis of Some Optimization Algorithms

In this section we will compute the non-convergence probability @(n) for some
optimization problemswhich are independent of the cost functionto minimize. The
application of the theoretical results obtained above will alow to establish when
consecutive trials are more efficient than a single extended search for the global
minimum.

Although the analyzed optimization algorithms are not employed for the solu-
tion of real-world problems in the smple form considered here, the practical
implications (which is deferred to afollowing publication) can be very interesting.
Furthermore, the procedure employed for this analysis can a so be applied to other
more complex cases.

Given a generic optimization problem Q = (A, f), from definition (2) for the
probability Qq(n) we obtain

Qa(n) = [ (1 -pa(k) (8)

k=1
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where
po(k) = Po(xr € Hlxp 1 ¢ H,...,o1 ¢ H) 9)

isthe probability that the algorithm .4 convergesin the kth iteration.

But

. Qa(n+1) - B PR
e = 0am) T L pelnt+ 1) =1-_lim po(n) (10)

thus, theorem 1 allowstofindthefollowing general rule: if po(n) — 0(pa(n) — 1)
the optimization problem 2 = (A, f) ismultistart (singlestart) suited. Furthermore,
by using (8) the expression for Qo (n) can be obtained by computing the conver-
gence probabilitiespa (k), k = 1,2,...,n, given by (9).

With these premises we can analyze three optimization algorithms whose evo-
lution isindependent of the cost function to minimize.

4.1. PURE RANDOM SEARCH

Pure random search is the simplest stochastic method for global optimization: it
samples at random points in the domain D of the cost function f(x) until an
element of the convergenceset H isfound. Since every choice does not depend on
the previous ones, we obtain

prs(k) = Prs(xp € Hlxy 1 ¢ H,...,x1 ¢ H) =
= PRS(:Dk EH) :VH/VD =1l—-«

assuming that the sampling probability is uniformin D. Then, from (8) we obtain

n

Qrs(n) = [[ (1 — prs(k)) = ™

k=1

As aready noted in section 3, the behavior (6) for the non-convergence proba-
bility Q(n) correspondsthus to every optimization problem that employsthe pure
random search algorithm. In these cases the theoretical analysis concludes that
repeated trials and single extended search have the same efficiency. Thisresult can
also be obtained by a simple reasoning: restarting a pure random search has no
effect on the probability of reaching the global minimum since every sampling is
independent of the others.

4.2. GRID SEARCH

In the solution of practical problems the grid search method is often employed to
obtain initial coarse-grained information on the cost function to minimize. In this
algorithm the domain D is subdivided into d measurable subsets Sy, ..., Sg, h of
which are included in the convergence set 1. At every iteration one subset S; not
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aready controlled is randomly chosen and the convergenceis achievedif S; C H.
In fact, it is sufficient to pick any point in S; to have a satisfying estimate of the
global minimum f*.
It can be easily seen that the convergence probability at the kth iteration pes(k)

isgiven by

——— ifl1<k<d-h

1 ifk>d—nh
sinceinthecase 1 < k < d — h we have already chosen without success & — 1

subsets. If £ > d — h every choice |leads to the convergence.
Thus, from (8) we obtain the following expression for Qgs(n) whenn < d— h:

- S = () /G ay

while Qgs(n) = 0forn > d — h.

Now, let us verify in a direct manner that a single extended search is aways
more efficient in the optimization problems which employ the grid search method.
For thisaim, let us compare the quantities Qgs(n1) Qas(n2) and Qas(n1 + n2) for
generic numbers of iterationsny and ny. If ny > d — h or n, > d — h equation
(12) gives

Qas(n1)Qaes(n2) = 0= Qas(n1 + n2)
consequently repeated trials and single search are trivially equivalent since both of
them converge.
Onthecontrary, if ny < d—handny <d— hbutn; +ny > d— h, weobtain
Qaes(n1)Qas(n2) > 0= Qas(n1 + n2)

for which a single extended search is more advantageous since it surely leads to
the convergence set H.
Finally, inthe case ny + nyo < d — h we can write

Qos(ni+mnz) <d_”}1l_”2> <Z> _
Qas(n1)Qas(n2) ( d—ny ) ( d—ng >

~(d—n1—n2—k)(d—k)
H (d—n1—k)(d—n2—k)

;‘??‘
I—‘O

_ H —nl—k)(d—nz—k)—n1n2<1

(d—n1—k)(d—n2—k)
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thus, asingle search is again more efficient.

Such aresultisalso motivated by asimple practical observation: if the execution
of agrid search is restarted all the information acquired on the previous sampled
subsets S; which do not belong to the convergence set is irreparably lost. This
corresponds to areduction in the total convergence probability.

4.3. RANDOM WALK

The third optimization algorithm here considered is the random walk method,;
according to this technique agloba minimum of the cost function f(z) is searched
for by performing a random walk in the domain D. Periodic boundary conditions
areassumed; therefore, if therandomwalk leavesthedomain Dinagivendirection,
it reenters the same set at the opposite side. Although thisis not a practical opti-
mization algorithm, some minimization techniques (e.g. the simulated annealing
method (Kirkpatrick et al., 1983; Coranaet a., 1988)) useit asa basic component.
For sake of simplicity, let us suppose that the domain D is rectangular

D={xeR"|a; <z <b;, a;,b; ER, fori=1,...,m}

being z; the ith component of the point 2. To obtain an explicit expression for
the non-convergence probability Qrw(n) let us subdivide the definition interval
[aj, b;] in the ith direction into d; (eventualy different) parts.

Inthisway d = dj - dy---d,, rectangular subsets S;, = 1,...,d, which
entirely cover the domain D have been determined. Each of them is associated
to an m-dimensional integer vector z whose ith component z; corresponds to the
projection of the subset on theinterva [a;, b;]. Thuswehavel < z; < d; for every
1 =1,...,m. The vector notation z will be often used in the following to denote
the corresponding subset S;.

To avoid unnecessary complications let us suppose that the convergence set H
is formed by the union of a finite number / of subsets S;. At first let us restrict
ourselvesto the case h = 1 and denote with z* the unique subset belonging to H.
Thegeneralization of thefollowing resultstothecaseh > 1 will bestraightforward.

Therandom walk method starts the search by choosing at random, with uniform
probability, a subset z; in the domain D. At every subsequent iteration one of the
2m possible directions is selected with equal probability and the adjacent subset
along this direction is visited to check its eventual belonging to the convergence
set H. Obviously the search continues until the subset z* is found.

Our theoretical analysisof therelative efficiency of repeated trialsin therandom
wak method begins with the monodimensional case (m = 1). To compute the
convergenceprobability pg\,)v(k) at the kthiteration let usdenotewithw = |21 —2*|
the (integer) distance between the subset z; initially chosen by the algorithm and
the optimal subset z*.
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Since boundary conditions are periodic, the subset d is considered adjacent to
the subset 1; we can therefore assert that the probability of reaching z* at the kth
iteration, starting from zy, is given by the sum of two distinct components:

— the probability u,(clz 1(w, d) that a monodimensional symmetric random walk,
starting from the (integer) point w visits a step £ — 1 the extremity O of the
interval [0, d].

— the probability u,(cl_)l(d — w, d) that the samerandom walk visitsat step &k — 1
the extremity d of the interval [0, d].

Thuswe obtain

piy (k) = d~ Z (w2 s, d) + 24 (d - w,d)) . (12)

The problem of obtaining the non-convergence probability Qg,)v(n) is then

reduced to that of finding an explicit expression for the quantitieSu,(cl) (w,d). Feller
(Feller, 1968, pag. 353) gives the following formulain case of symmetric random
walk when k& > 1:

d—1
(1) 1 -1 TV L TV WY
w (w,d) = d ;:1005’“ - sin—-sin—— (13)
from which we have

d-1
. . d—
u(d—w.d) = a7 Y oot ™ in ™ in A0

-1
=d 1) (-1 tcos' " 17 — sm%jsinm:;y. (14)

By substituting (13) and (14) in (12) we obtain the expression for the conver-
gence probability pg\,)v(k) whenk > 2
d—1d-1

(1) ) 2TV o TV L TWY
peaw (k) = wZOVZl V) cog®~ - sin—-sin—
d—1 1d/2]
-1 2v—1
_ 2 2 - ‘
_mzzm( >m@d>
w=0 v=1
.sin <7Tw2 d_1> (15)

having denoted with |z | the integer not greater than x.
This formula can be simplified by using the identity
- in2dgn24=1
Z Snyw = 2 — 2
sny
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Thus, if weset v = 7(2v — 1) /d equation (15) becomes

play(k) = 2472 Ljéj (—1)"*+1 cogt2 (#“ - 1) sin (WZV - 1) .
. (W(zu - 122(d - 1)) /Sin <ﬂ_21/2; 1) _
= 4472 szflj(—l)"“ cog’ 2 <7r2yd_ 1) cos <7r2]j2; 1> :
sin (r &= (16)
sincein this case
sin’y—zd _ sinr (,, - %) — (—pvit
Furthermore, for k = O and £ = 1 we have

ug” (w,d) = {cl) ic];t;\ue;vize
i - (2t

from which f0||OWSp|g\',)v(l) = pg\,)v(Z) =1/d.
Now, let us employ the expression (16) for p%,)\,(k) to obtain information on the
relative efficiency of two repeated trials. Note that

ld/2] _
lim pQ) (k) = 4d 2 > (—1)”+1cos< 2 1) :

Ertoo = "2d
. (21/—1)(d—1)) . 2( 2y—1>_
sin <7r > kﬂrroocos’“ T— =0

since |cosm(2v — 1)/d| < 1forevery v = 1,...,|d/2|. Thus, for theorem 1
and equation (10) every monodimensional optimization problem using the random
walk method is multistart suited.

In the general case where the domain D has dimension m > 1 it can be easily
seen that the probability of reaching the subset z* at the kth iteration, starting from
theinitial subset z,, isagain given by the sum of two components:

— the probability u,(;’_q(w, d) that a m-dimensional symmetric random walk,
starting from w visits at step £ — 1 thepoint 0 = (0, ..., 0).

— the probability u{™) (d — w, d) that the same random walk visitsat step & — 1
thepoint d = (d1, ..., dm).
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being w the integer vector whose generic components w; is given by the distance
|z1; — z;|. Thus, the probability p&\",ﬁ,)(k) of reaching the convergence at the kth
iteration has the following form:
di-1  dpy—1
Pl () =d ™23 - 3 (u™ (w, d) + u{™)(d — w, d)) . (18)

w1=0 wm=0

Since at every iteration the choice of anew subset isdone with equal probability
in the 2m coordinate directions we obtain

u{™ (w, d) =

_ k! 1 1
=t gy () ) (o dn) (19)
ki+-+km=k m

where the quantities u,(cl) (w;, d;) are given by (13) for £ > 1 and by (17) for
k = 0,1. The substitution of (19) in (18) provides the desired formula for the
convergence probability at the kth iteration when the domain D ism-dimensional .

An analysis of the relative efficiency of two repeated trials in the general case
can be executed by noting that (13) givesfor k > 1

d—1
d—t Z_jl

d—1
< d1 1T < 1T
< VE_lcos’“ 5 < cos” y

vz . TV . TTwr
COSklj‘ . ‘Snj‘ . ‘Sn—

1

IN

<

since | cos(mv/d)| < cos(m/d) when1 < v < d — 1. Thisinequality isalso valid
for k = 0, 1; consequently by using (19) we can write

k!
u(w,d) < m* Y S p—l cos’“l‘ldl---coskm_ldl <
k1+"'+km:k 1: " hvme 1 m
k! s
< mFcogm X > ————=cos"" = (20)
d, okl d

being d = d; - - - d,,,. Since the right hand side does not depend on w, the same
upper bound is also valid for u,(cm> (d — w,d).
By substituting (20) in (18) we obtain the following inequality for pg\",f,) (k)

di—1  dpy—1
(m) < -1 L. -m-1T _ —-m—-1T
prw (k) <2471 " - > cost S =2co =
w1=0 wm=0
Sincethis upper bound vanisheswhen & increasesindefinitely we can conclude
by virtue of theorem 1 that an optimization problem employing the random walk

method is multistart suited also in the multidimensional case.
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Such a result remains valid when the convergence set H contains a number
h > 1 of subsets available for sampling. In this case we can consider the h opti-
mi zation problems having one subset of these as convergence set; let usdenotewith
p1(k), ..., pn(k) the corresponding convergence probabilities at the £th iteration
having expressions given by (18).

Then the convergence probability pgg,;) (k) of the original problem isalways not
greater than the sum py (k) + - - - + py (k) for which we obtain

lim p <Z lim p;(k) =0.

k—+o00 lc%+oo

Thus the corresponding optimization problem is again multistart suited.

Inthe achievement of thisgeneral result we have not controlled if the considered
optimization problem is certain. But, for an important theorem on random walk
(Feller, 1968, pagg. 359-362) we can assert that lim,,_, ngv)(n) = 0 only
when m = 1 (monodimensional case) or m = 2 (bidimensional case), whereas
for m > 2 (apart from very particular shapes of the set H) the convergence to the
globa minimum is not ensured.

5. Conclusions

The problem of giving suitable conditions for the restart of a global optimization
algorithm has been approached in a theoretical way. The behavior of the con-
vergence probability R(n) (or equivalently that of its reciprocal Q(n)) alows to
characterize different classes of optimization problems and establish the relative
efficiency of repeated trials.

In particular athorough theoretical analysisisonly possible when asymptotical
properties are considered. In case of certain optimization problems, for which the
achievement of the global minimum is ensured when the number of iterations
increases indefinitely, the limit value of the ratio Q(n + 1)/Q(n) alows to solve
the efficiency comparison between repeated trials and single extended search.
In the opposite case (uncertain problems) a general theoretical result asserts the
superiority of consecutive searches.

The detailed analysis of three optimization agorithms (pure random search,
grid search and random walk), whose evolution isindependent of the cost function
to be minimized has allowed to obtain afirst validation of the theoretical approach
employed. The procedure used for the efficiency evaluation of repeated trials has
achievedin al the casesthe correct expression for the non-convergence probability
Q(n) and can be appliedin the study of other more complex optimization problems.
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