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Abstract. While searching for the global minimum of a cost function we have often to decide if a restart
from a different initial point would be more advantageous than continuing current optimization. This
is a particular case of the efficiency comparison between repeated minimizations and single extended
search having the same total length.

A theoretical approach for the treatment of this general problem forms the subject of the present
paper. A fundamental role is played by the probability of reaching the global minimum, whose
asymptotical behavior allows to provide useful information on the efficiency of repeated trials.

The second part of this work is devoted to a detailed analysis of three optimization algorithms
whose evolution is independent of the cost function to be minimized: pure random search, grid search
and random walk. These three examples give an interesting validation of the theoretical results and
provide a general procedure which can be employed in the study of more complex optimization
problems.
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1. Introduction

The global optimization of a cost function with several variables is a valuable way
to obtain a satisfactory solution for a wide range of real-world problems (Bazaraa
and Shetty, 1979). For this aim a huge number of different algorithms has been
proposed that attempt to establish a good trade-off between search complexity and
computational burden (Törn and Žilinskas, 1989).

Most of them contain a stochastic component which increases the robustness
of the method and the adaptability to the characteristics of the cost function
(Aluffi-Pentini et al., 1985; Baba, 1979; Boender et al., 1982; Corana et al., 1988;
Muselli and Ridella, 1992). In fact, it can be shown that, under mild hypotheses, a
random optimization algorithm is always able to reach the global minimum (within
any arbitrary precision) with probability one when the computing time increases
indefinitely (Devroye, 1976; Solis and Wets, 1981). However, quantitative esti-
mates of the number of iterations required to obtain a satisfactory result are only
given in particular cases (Dorea, 1983).

A typical execution of a stochastic minimization algorithm generally shows two
consecutive phases. At first the sampled points are characterized by a cost function
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value which decreases fast, but subsequently, if the convergence has not already
been reached, the current minimum is rarely updated and apparently the search
continues with poor efficiency.

It is then interesting to determine, with reference to the problem we are solving,
if and when the optimization process must be restarted from a new initial point.
Clearly, such an action is to be undertaken according to the corresponding prob-
ability of reaching the global minimum of the given cost function. Let us denote
with n1 the iteration in which the algorithm execution will be suspended; then it is
advantageous to begin a new search with length n2 if the probability R(2)(n1; n2)
of finding the global minimum during the two consecutive trials is greater than
the probability R(n1 + n2) of reaching the convergence by continuing the initial
search for other n2 iterations.

More generally, it can be useful to evaluate the efficiency of executing t trials
having lengthsn1; . . . ; nt with respect to a single search withn1+� � �+nt iterations.
This analysis has interesting implications in the parallelization of optimization
algorithms. In fact, the simplest way of executing any global minimum search on
a parallel machine is to carry out several different minimizations by assigning to
each processor a different starting point. Thus, if we have theoretically proved that
many consecutive searches are more favorable than a single extended trial, we can
conclude that this simple parallel approach is really efficient.

A theoretical study of this problem is reported in (Kolen, 1988) with reference to
the employment of optimization in neural network training. Through a questionable
proof the general advantage of repeated trials is asserted, whatever optimization
algorithm is considered. Unfortunately, this result is not valid in some practical
cases: consider for example the grid method, in which a set of equidistributed
samples in the cost function domain is analyzed one at a time to find the global
minimum. We can directly conclude that any restart of this algorithm (before the
complete inspection of the set) leads to a loss of information and consequently to
a reduction of the total convergence probability. Thus, a single extended search is
always more efficient when the grid method is applied.

A coherent theoretical approach which allows to obtain general conditions on
the efficiency of repeated trials is the object of the present paper. Particular attention
will be devoted to the influence of the asymptotical behavior of the probabilityR(n)
that the considered optimization algorithm converges to the global minimum of the
given cost function.

An adequate framework for the problem above is contained in section 2 together
with the reduction of the generic analysis for t repeated trials to the special case
t = 2. Section 3 reports the main results and the study of some typical asymptotical
behaviors of the convergence probability R(n). The thorough analysis of three
optimization methods which do not depend on the cost function to minimize will
be the subject of section 4 and allows to validate the theoretical assertions.
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2. The General Problem

Consider a measurable function f(x) defined on a compact set D � Rm, and
denote with VD the Lebesgue measure of its domain D. Let f� be the global
minimum of f(x) in D; we introduce the following convergence set H:

H = fx 2 D : f(x) < f� + "g

being " > 0 a given tolerance in the determination of the global minimum. Since
the cost function f(x) is measurable by hypothesis, the convergence set H will
also be measurable; let us denote with VH its Lebesgue measure.

As one will note in the following, the results contained in the present paper holds
for different definitions of the convergence set H provided that its measurability
is ensured. It is also possible to employ a measure � different from the Lebesgue’s
one; the only basic hypothesis to be verified is that both the domain D and the
convergence set H have non null measure.

Then consider a generic optimization algorithmA; at every iteration it samples
a point xn 2 D according to proper choice criteria which depend on the cost
function values in the points x1, . . . , xn�1 previously reached. If xn 2 H we say
that the algorithmA has converged in the nth iteration and the sampling is stopped.
By hypothesis, the first point x1 is randomly chosen with uniform probability in
the whole domain D.

Let us call optimization problem
 = (A; f) the search for the global minimum
f� (or, equivalently, a point of the convergence set H) of the cost function f(x)
done by the algorithmA. We want to find under what conditions it is more efficient
making several repeated trials (starting from different randomly chosen initial
points in D) than executing a single search with extended length.

For this aim let us denote with R
(n), n � 0, the probability that the opti-
mization algorithm A reaches the convergence set H of the cost function f within
the nth iteration. From this definition we obtain that R
(n) is a monotonically
increasing sequence of real numbers with the following initial values:

R
(0) = 0 ; R
(1) = VH=VD (1)

since the first point x1 is randomly chosen in the domain D by the algorithm A

with uniform probability.
Then given t positive integers n1; . . . ; nt, we want to compare the following

quantities:

� the probability R(t)

 (n1; . . . ; nt) that the algorithm A converges during t con-

secutive optimizations having length n1; . . . ; nt respectively and
� the probability R
(n1 + � � � + nt) that the algorithm A converges in a single

global minimum search with n1 + � � � + nt iterations.
In this quantitative analysis of repeated trials it is assumed that on the average

every iteration requires the same computing time. When this condition is not
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satisfied proper corrective factors should be applied to the following theoretical
results.

The comparison above can be executed by writing the quantitiesR(t)

 (n1; . . . ; nt)

and R
(n1 + � � � + nt) in terms of the probability Q
(n) that the optimization
algorithm A does not reach the convergence set H within the nth iteration:

Q
(n) = P
(x1 62 H; . . . ;xn 62 H) = 1�R
(n) (2)

where the subscript 
 remembers that every probability depends on the optimiza-
tion problem we are considering.

Since two subsequent searches for the global minimum are independent each
other, the probability that the convergence is not reached in t trials is equal to the
product of the probabilities of not finding a point of H in every single search. Thus
we have

R
(t)

 (n1; . . . ; nt) = 1�Q
(n1) � � �Q
(nt) = 1�

tY
i=1

Q
(ni): (3)

Furthermore, equation (2) gives

R
(n1 + � � � + nt) = 1�Q
(n1 + � � �+ nt) = 1�Q


 
tX

i=1

ni

!
(4)

Then the difference R
(t)

 (n1; . . . ; nt) � R
(n1 + � � � + nt) can be written in the

following way:

R
(t)

 (n1; . . . ; nt)�R
(n1 + � � � + nt) = Q


 
tX

i=1

ni

!
�

tY
i=1

Q
(ni) =

=
t�1X
j=1

j�1Y
k=1

Q
(nk)

0
@Q


0
@ tX
i=j

ni

1
A�Q
(nj)Q


0
@ tX
i=j+1

ni

1
A
1
A =

=
t�1X
j=1

j�1Y
k=1

Q
(nk)

0
@R(2)




0
@nj; tX

i=j+1

ni

1
A�R


0
@nj + tX

i=j+1

ni

1
A
1
A : (5)

But Q
(nk) > 0 for every k; thus, the sign of the terms in the summation is

given by the differencesR(2)

 (nj ;

P
t

i=j+1 ni)�R
(nj+
P

t

i=j+1 ni). In particular,
if for every j we have

R
(2)



0
@nj; tX

i=j+1

ni

1
A > R


0
@nj + tX

i=j+1

ni

1
A

we also obtain

R
(t)

 (n1; . . . ; nt) > R
(n1 + � � �+ nt)
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and consequently t repeated trials are more efficient. The opposite is true when for
every j

R
(2)



0
@nj; tX

i=j+1

ni

1
A < R


0
@nj + tX

i=j+1

ni

1
A :

The original problem can be therefore reduced to the comparison between
the convergence probabilities of two consecutive trials with length n1 and n2

respectively and a single extended search having length n1 + n2.

3. Efficiency Evaluation of Two Consecutive Searches

During the execution of an optimization algorithm it is sometimes necessary to
stop the current trial and restart a new search from a different initial point since
further iterations do not sufficiently improve the probability of reaching the global
minimum of the cost function. Thus, the problem of evaluating the efficiency of
two consecutive searches can be expressed in the following way: at what iteration
n1 is it advantageous to stop an optimization algorithm and start a new search with
length n2 rather than doing a single trials having length n1 + n2?

Such a problem is difficult to solve in a general case; a thorough theoretical
treatment can be obtained when we focus on the asymptotical behavior of the
convergence probability R
(n). This analysis has however great practical interest;
in fact, it allows to determine if the execution of an optimization algorithm is to be
continued by examining the convergence speed to the global minimum.

For this aim let us introduce two basic definitions:

DEFINITION 1. An optimization problem 
 will be called multistart suited if
there exists a positive integer n such that for every n1 � n and every n2 we have
R
(n1 +n2) � R

(2)

 (n1; n2). It will be called singlestart suited if R
(n1 +n2) �

R
(2)

 (n1; n2).

Therefore, when we are facing with a multistart suited optimization problem it is
more efficient, after a given iteration n, to stop the execution of the algorithm A

and begin a new search starting from a different initial point. On the contrary, in
singlestart suited optimization problems it is better to continue the current search
if a sufficient number n of iterations has already been carried out.

From (3) and (4) in the case m = 2 we obtain the corresponding definitions in
terms of the non-convergence probability Q
(n):

R
(n1 + n2) � R
(2)

 (n1; n2) () Q
(n1 + n2) � Q
(n1)Q
(n2)

R
(n1 + n2) � R
(2)

 (n1; n2) () Q
(n1 + n2) � Q
(n1)Q
(n2)

Because of their immediate applicability the inequalities containing the prob-
ability Q
(n) will be preferred for determining the characterization of a given
problem 
.
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We can also classify optimization problems with regard to the limit value of the
corresponding convergence probability R
(n):

DEFINITION 2. An optimization problem 
 will be called certain if limn!+1

R
(n) = 1; otherwise it will be called uncertain.

With these premises let us analyze the asymptotical behavior of the non-convergence
probability Q
(n) to obtain general information on the efficiency of two repeat-
ed searches for the global minimum. For sake of simplicity, let us remove from
the notation for the probabilities R(n) and Q(n) the explicit dependence on the
optimization problem 
 we are considering. From the general properties of the
convergence probability R(n) we obtain thatQ(n) is a decreasing sequence of real
numbers. Moreover, by setting � = 1� VH=VD equations (1) gives the following
initial values for Q(n):

Q(0) = 1 ; Q(1) = �

it should be observed that 0 � � < 1 since by hypothesis VH > 0.
Consider at first the class of optimization problems for which two repeated trials

and a single extended search have the same efficiency; in these cases we obtain

Q(n1)Q(n2) = Q(n1 + n2):

If such a relation is valid independently of the values assumed by n1 and n2 we
have

Q(n) = Q(1)Q(n� 1) = (Q(1))2Q(n� 2) =
�
Q(1)

�n
= �n: (6)

This non-convergence probability �n characterizes the only class of optimiza-
tion problems for which the execution of two consecutive trials is always equivalent
to a single continuative search. As we will find in Section 4, every time the pure
random search method is applied an optimization problem of this kind arises.

It can also be easily shown that if Q(n) = an (where a can be different from �)
for every n greater than a given positive integer k, repeated trials and single search
are equivalent when both n1 and n2 are greater than k. Thus we can reasonably
suppose that the non-convergence probability Q(n) = an forms in one sense a
boundary between multistart and singlestart suited optimization problems. The
following lemma provides a theoretical validation of this intuitive assertion:

LEMMA 1. If
�
Q(n2)

�1=n2 > lim sup
n!+1Q(n+1)=Q(n) there exists a positive

integer k such that for every n1 � k we have Q(n1 + n2) < Q(n1)Q(n2).

If
�
Q(n2)

�1=n2 < lim infn!+1Q(n + 1)=Q(n) there exists a positive integer
k such that Q(n1 + n2) > Q(n1)Q(n2) for every n1 � k.

Proof. If we set � = lim sup
n!+1Q(n + 1)=Q(n) then for every " > 0

there exists n" � 1 such that Q(n + 1) < (� + ")Q(n) for every n � n". Take
" = (

�
Q(n2)

�1=n2 � �)=2 and set k = n"; for every n1 � k we have

Q(n1 + n2) < (�+ ")n2 Q(n1) < Q(n1)Q(n2)
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since by hypothesis

�
Q(n2)

�1=n2 >
��
Q(n2)

�1=n2 + �
�
=2 = �+ ":

The second assertion of the lemma can be proved in a similar way.

Unfortunately this lemma binds the evaluation of the efficiency of two consec-
utive searches to the length n2 of the second one. In some cases of great practical
interest such a dependence can be removed.

THEOREM 1. An optimization problem is singlestart suited if limn!+1 Q(n +
1)=Q(n) = 0 and multistart suited when limn!+1Q(n+ 1)=Q(n) = 1.

Proof. Consider at first the case limn!+1Q(n+ 1)=Q(n) = 0; if Q(n2) > 0,
from lemma 1 we obtain Q(n1 + n2) < Q(n1)Q(n2) for n1 not less than a given
integer k. On the other hand, whenQ(n2) = 0 we have also Q(n1+n2) = 0, since
Q(n) is a decreasing sequence.

A similar reasoning holds in the case limn!+1Q(n + 1)=Q(n) = 1; in fact
lemma 1 gives Q(n1 + n2) > Q(n1)Q(n2) since Q(n2) < 1 for every n2 � 1.

A direct application of this theorem gives the following general result:

COROLLARY 1. Every uncertain optimization problem is multistart suited.

Thus, when we are facing with an uncertain optimization problem it is more efficient
to execute two consecutive trials if one of them runs for a time long enough. A
situation of this kind occurs when we employ a local optimization algorithm to
search for the minimum of a multivariate cost function. Note that corollary 1 is in
agreement with practical experience: the global minimum can generally be found
by executing repeated trials starting from different initial points.

Our theoretical study can then be restricted to certain optimization problems:
in this case a complete theoretical analysis of some general types of asymptotical
behaviors of the non-convergence probability Q(n) is possible. Information on the
efficiency of repeated trials in a real application can be obtained by comparing an
estimate of the asymptotical behavior of the current non-convergence probability
Q(n) with proper reference sequences like that contained in the following two
examples.

EXAMPLE 1. Consider the class of optimization problems whose probabilityQ(n)
has the following property

Q(n) � n� with  > 0 (7)

where the symbol ‘�’ denotes equal asymptotical behavior:

an � bn () lim
n!+1

an=bn = 1
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Note that (7) implies limn!+1Q(n) = 0 for which the corresponding opti-
mization problem is certain; furthermore

lim
n!+1

Q(n+ 1)
Q(n)

= lim
n!+1

Q(n+ 1)
(n+ 1)�

�
n�

Q(n)
�
(n+ 1)�

n�
= 1

for every  > 0. Thus, theorem 1 allows to assert that all the problems belonging to
this class are multistart suited, independently of the value of the positive exponent
.

EXAMPLE 2. A second important class of optimization problems is characterized
by the following asymptotical behavior of the non-convergence probability Q(n):

Q(n) � an


with 0 < a < 1 and  > 0.

In this case we have again

lim
n!+1

Q(n) = lim
n!+1

an


�
Q(n)

an


= 0

for which we are considering certain optimization problems. Moreover

lim
n!+1

Q(n+ 1)
Q(n)

= lim
n!+1

a(n+1)

an


=

8<
:

1 se 0 <  < 1
a if  = 1
0 if  > 1

Thus, three different situations can occur:
� when 0 <  < 1 the corresponding optimization problem is singlestart suited,
� when  > 1 the corresponding optimization problem is multistart suited,
� in the case  = 1 the relative efficiency of two repeated trials depends on the

value of Q(n2) according to lemma 1.

4. Analysis of Some Optimization Algorithms

In this section we will compute the non-convergence probability Q(n) for some
optimization problems which are independent of the cost function to minimize. The
application of the theoretical results obtained above will allow to establish when
consecutive trials are more efficient than a single extended search for the global
minimum.

Although the analyzed optimization algorithms are not employed for the solu-
tion of real-world problems in the simple form considered here, the practical
implications (which is deferred to a following publication) can be very interesting.
Furthermore, the procedure employed for this analysis can also be applied to other
more complex cases.

Given a generic optimization problem 
 = (A; f), from definition (2) for the
probability Q
(n) we obtain

Q
(n) =
nY

k=1

�
1� p
(k)

�
(8)
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where

p
(k) = P
(xk 2 Hjxk�1 62 H; . . . ;x1 62 H) (9)

is the probability that the algorithm A converges in the kth iteration.
But

lim
n!+1

Q
(n+ 1)
Q
(n)

= lim
n!+1

1� p
(n+ 1) = 1� lim
n!+1

p
(n) (10)

thus, theorem 1 allows to find the following general rule: ifp
(n)! 0 (p
(n)! 1)
the optimization problem
 = (A; f) is multistart (singlestart) suited. Furthermore,
by using (8) the expression for Q
(n) can be obtained by computing the conver-
gence probabilities p
(k), k = 1; 2; . . . ; n, given by (9).

With these premises we can analyze three optimization algorithms whose evo-
lution is independent of the cost function to minimize.

4.1. PURE RANDOM SEARCH

Pure random search is the simplest stochastic method for global optimization: it
samples at random points in the domain D of the cost function f(x) until an
element of the convergence set H is found. Since every choice does not depend on
the previous ones, we obtain

pRS(k) = PRS(xk 2 Hjxk�1 62 H; . . . ;x1 62 H) =

= PRS(xk 2 H) = VH=VD = 1� �

assuming that the sampling probability is uniform in D. Then, from (8) we obtain

QRS(n) =
nY

k=1

(1� pRS(k)) = �n

As already noted in section 3, the behavior (6) for the non-convergence proba-
bility Q(n) corresponds thus to every optimization problem that employs the pure
random search algorithm. In these cases the theoretical analysis concludes that
repeated trials and single extended search have the same efficiency. This result can
also be obtained by a simple reasoning: restarting a pure random search has no
effect on the probability of reaching the global minimum since every sampling is
independent of the others.

4.2. GRID SEARCH

In the solution of practical problems the grid search method is often employed to
obtain initial coarse-grained information on the cost function to minimize. In this
algorithm the domain D is subdivided into d measurable subsets S1; . . . ; Sd, h of
which are included in the convergence set H . At every iteration one subset Sj not
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already controlled is randomly chosen and the convergence is achieved if Sj � H .
In fact, it is sufficient to pick any point in Sj to have a satisfying estimate of the
global minimum f�.

It can be easily seen that the convergence probability at the kth iteration pGS(k)
is given by

pGS(k) =

8><
>:

h

d� k + 1
if 1 � k � d� h

1 if k > d� h

since in the case 1 � k � d � h we have already chosen without success k � 1
subsets. If k > d� h every choice leads to the convergence.

Thus, from (8) we obtain the following expression forQGS(n) when n � d�h:

QGS(n) =
nY

k=1

�
1�

h

d� k + 1

�
=

nY
k=1

d� h� n+ k

d� n+ k
=

=
(d� h)!(d � n)!
d!(d � h� n)!

=

�
d� n

h

���
d

h

�
(11)

while QGS(n) = 0 for n > d� h.
Now, let us verify in a direct manner that a single extended search is always

more efficient in the optimization problems which employ the grid search method.
For this aim, let us compare the quantities QGS(n1)QGS(n2) and QGS(n1 +n2) for
generic numbers of iterations n1 and n2. If n1 > d � h or n2 > d � h equation
(11) gives

QGS(n1)QGS(n2) = 0 = QGS(n1 + n2)

consequently repeated trials and single search are trivially equivalent since both of
them converge.

On the contrary, if n1 � d� h and n2 � d� h but n1 + n2 > d� h, we obtain

QGS(n1)QGS(n2) > 0 = QGS(n1 + n2)

for which a single extended search is more advantageous since it surely leads to
the convergence set H .

Finally, in the case n1 + n2 � d� h we can write

QGS(n1 + n2)

QGS(n1)QGS(n2)
=

�
d� n1 � n2

h

��
d

h

�
�
d� n1

h

��
d� n2

h

� =

=
h�1Y
k=0

(d� n1 � n2 � k)(d � k)

(d� n1 � k)(d � n2 � k)

=
h�1Y
k=0

(d� n1 � k)(d � n2 � k)� n1n2

(d� n1 � k)(d� n2 � k)
< 1
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thus, a single search is again more efficient.
Such a result is also motivated by a simple practical observation: if the execution

of a grid search is restarted all the information acquired on the previous sampled
subsets Sj which do not belong to the convergence set is irreparably lost. This
corresponds to a reduction in the total convergence probability.

4.3. RANDOM WALK

The third optimization algorithm here considered is the random walk method;
according to this technique a global minimum of the cost function f(x) is searched
for by performing a random walk in the domain D. Periodic boundary conditions
are assumed; therefore, if the random walk leaves the domainD in a given direction,
it reenters the same set at the opposite side. Although this is not a practical opti-
mization algorithm, some minimization techniques (e.g. the simulated annealing
method (Kirkpatrick et al., 1983; Corana et al., 1988)) use it as a basic component.

For sake of simplicity, let us suppose that the domain D is rectangular

D = fx 2 Rm
jai � xi � bi; ai; bi 2 R; for i = 1; . . . ;mg

being xi the ith component of the point x. To obtain an explicit expression for
the non-convergence probability QRW(n) let us subdivide the definition interval
[ai; bi] in the ith direction into di (eventually different) parts.

In this way d = d1 � d2 � � � dm rectangular subsets Sj , j = 1; . . . ; d, which
entirely cover the domain D have been determined. Each of them is associated
to an m-dimensional integer vector z whose ith component zi corresponds to the
projection of the subset on the interval [ai; bi]. Thus we have 1 � zi � di for every
i = 1; . . . ;m. The vector notation z will be often used in the following to denote
the corresponding subset Sj .

To avoid unnecessary complications let us suppose that the convergence set H
is formed by the union of a finite number h of subsets Sj . At first let us restrict
ourselves to the case h = 1 and denote with z� the unique subset belonging to H .
The generalization of the following results to the caseh > 1 will be straightforward.

The random walk method starts the search by choosing at random, with uniform
probability, a subset z1 in the domain D. At every subsequent iteration one of the
2m possible directions is selected with equal probability and the adjacent subset
along this direction is visited to check its eventual belonging to the convergence
set H . Obviously the search continues until the subset z� is found.

Our theoretical analysis of the relative efficiency of repeated trials in the random
walk method begins with the monodimensional case (m = 1). To compute the
convergence probability p(1)RW(k) at the kth iteration let us denote withw = jz1�z

�j

the (integer) distance between the subset z1 initially chosen by the algorithm and
the optimal subset z�.
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Since boundary conditions are periodic, the subset d is considered adjacent to
the subset 1; we can therefore assert that the probability of reaching z� at the kth
iteration, starting from z1, is given by the sum of two distinct components:
� the probability u

(1)
k�1(w; d) that a monodimensional symmetric random walk,

starting from the (integer) point w visits at step k � 1 the extremity 0 of the
interval [0; d].

� the probability u(1)
k�1(d�w; d) that the same random walk visits at step k� 1

the extremity d of the interval [0; d].
Thus we obtain

p
(1)
RW(k) = d�1

d�1X
w=0

�
u
(1)
k�1(w; d) + u

(1)
k�1(d� w; d)

�
: (12)

The problem of obtaining the non-convergence probability Q
(1)
RW(n) is then

reduced to that of finding an explicit expression for the quantities u(1)
k
(w; d). Feller

(Feller, 1968, pag. 353) gives the following formula in case of symmetric random
walk when k > 1:

u
(1)
k
(w; d) = d�1

d�1X
�=1

cosk�1 ��

d
sin

��

d
sin

�w�

d
(13)

from which we have

u
(1)
k
(d� w; d) = d�1

d�1X
�=1

cosk�1 ��

d
sin

��

d
sin

�(d� w)�

d
=

= d�1
d�1X
�=1

(�1)�+1 cosk�1 ��

d
sin

��

d
sin

�w�

d
: (14)

By substituting (13) and (14) in (12) we obtain the expression for the conver-
gence probability p(1)RW(k) when k > 2

p
(1)
RW(k) = d�2

d�1X
w=0

d�1X
�=1

�
1� (�1)�

�
cosk�2 ��

d
sin

��

d
sin

�w�

d
=

= 2d�2
d�1X
w=0

bd=2cX
�=1

cosk�2
�
�

2� � 1
d

�
sin
�
�

2� � 1
d

�
�

� sin
�
�w

2� � 1
d

�
(15)

having denoted with bxc the integer not greater than x.
This formula can be simplified by using the identity

d�1X
w=0

sin w =
sin

d

2
sin

(d� 1)
2

sin


2

:
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Thus, if we set  = �(2� � 1)=d equation (15) becomes

p
(1)
RW(k) = 2d�2

bd=2cX
�=1

(�1)�+1 cosk�2
�
�

2� � 1
d

�
sin
�
�

2� � 1
d

�
�

� sin
�
�
(2� � 1)(d� 1)

2d

��
sin
�
�

2� � 1
2d

�
=

= 4d�2
bd=2cX
�=1

(�1)�+1 cosk�2
�
�

2� � 1
d

�
cos

�
�

2� � 1
2d

�
�

� sin
�
�
(2� � 1)(d� 1)

2d

�
(16)

since in this case

sin
d

2
= sin�

�
� �

1
2

�
= (�1)�+1:

Furthermore, for k = 0 and k = 1 we have

u
(1)
0 (w; d) =

�
1 if w = 0
0 otherwise

u
(1)
1 (w; d) =

�
1=2 if w = 1
0 otherwise

(17)

from which follows p(1)RW(1) = p
(1)
RW(2) = 1=d.

Now, let us employ the expression (16) for p(1)RW(k) to obtain information on the
relative efficiency of two repeated trials. Note that

lim
k!+1

p
(1)
RW(k) = 4d�2

bd=2cX
�=1

(�1)�+1 cos
�
�

2� � 1
2d

�
�

� sin
�
�
(2� � 1)(d� 1)

2d

�
lim

k!+1
cosk�2

�
�

2� � 1
d

�
= 0

since j cos�(2� � 1)=dj < 1 for every � = 1; . . . ; bd=2c. Thus, for theorem 1
and equation (10) every monodimensional optimization problem using the random
walk method is multistart suited.

In the general case where the domain D has dimension m > 1 it can be easily
seen that the probability of reaching the subset z� at the kth iteration, starting from
the initial subset z1, is again given by the sum of two components:
� the probability u

(m)
k�1(w; d) that a m-dimensional symmetric random walk,

starting from w visits at step k � 1 the point 0 = (0; . . . ; 0).

� the probability u(m)
k�1(d� w; d) that the same random walk visits at step k�1

the point d = (d1; . . . ; dm).
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being w the integer vector whose generic components wi is given by the distance
jz1i � z�

i
j. Thus, the probability p

(m)
RW (k) of reaching the convergence at the kth

iteration has the following form:

p
(m)
RW (k) = d�1

d1�1X
w1=0

� � �

dm�1X
wm=0

�
u
(m)
k�1(w; d) + u

(m)
k�1(d� w; d)

�
: (18)

Since at every iteration the choice of a new subset is done with equal probability
in the 2m coordinate directions we obtain

u
(m)
k

(w; d) =

= m�k
X

k1+���+km=k

k!
k1! � � � km!

u
(1)
k1
(w1; d1) � � � u

(1)
km

(wm; dm) (19)

where the quantities u
(1)
ki
(wi; di) are given by (13) for k > 1 and by (17) for

k = 0; 1. The substitution of (19) in (18) provides the desired formula for the
convergence probability at the kth iteration when the domain D is m-dimensional.

An analysis of the relative efficiency of two repeated trials in the general case
can be executed by noting that (13) gives for k > 1

u
(1)
k
(w; d) � d�1

d�1X
�=1

����cosk�1 ��

d

���� �
����sin

��

d

���� �
����sin

�w�

d

���� �
� d�1

d�1X
�=1

cosk�1 �

d
� cosk�1 �

d

since j cos(��=d)j � cos(�=d) when 1 � � � d� 1. This inequality is also valid
for k = 0; 1; consequently by using (19) we can write

u
(m)
k

(w; d) � m�k
X

k1+���+km=k

k!
k1! � � � km!

cosk1�1 �

d1
� � � coskm�1 �

dm
�

� m�k cosk�m
�

d

X
k1+���+km=k

k!
k1! � � � km!

= cosk�m
�

d
(20)

being d = d1 � � � dm. Since the right hand side does not depend on w, the same
upper bound is also valid for u(m)

k
(d� w; d).

By substituting (20) in (18) we obtain the following inequality for p(m)RW (k)

p
(m)
RW (k) � 2d�1

d1�1X
w1=0

� � �

dm�1X
wm=0

cosk�m�1 �

d
= 2 cosk�m�1 �

d
:

Since this upper bound vanishes when k increases indefinitely we can conclude
by virtue of theorem 1 that an optimization problem employing the random walk
method is multistart suited also in the multidimensional case.
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Such a result remains valid when the convergence set H contains a number
h > 1 of subsets available for sampling. In this case we can consider the h opti-
mization problems having one subset of these as convergence set; let us denote with
p1(k); . . . ; ph(k) the corresponding convergence probabilities at the kth iteration
having expressions given by (18).

Then the convergence probability p(m)RW (k) of the original problem is always not
greater than the sum p1(k) + � � �+ ph(k) for which we obtain

lim
k!+1

p
(m)
RW (k) �

hX
i=1

lim
k!+1

pi(k) = 0:

Thus the corresponding optimization problem is again multistart suited.
In the achievement of this general result we have not controlled if the considered

optimization problem is certain. But, for an important theorem on random walk
(Feller, 1968, pagg. 359–362) we can assert that limn!+1Q

(m)
RW (n) = 0 only

when m = 1 (monodimensional case) or m = 2 (bidimensional case), whereas
for m > 2 (apart from very particular shapes of the set H) the convergence to the
global minimum is not ensured.

5. Conclusions

The problem of giving suitable conditions for the restart of a global optimization
algorithm has been approached in a theoretical way. The behavior of the con-
vergence probability R(n) (or equivalently that of its reciprocal Q(n)) allows to
characterize different classes of optimization problems and establish the relative
efficiency of repeated trials.

In particular a thorough theoretical analysis is only possible when asymptotical
properties are considered. In case of certain optimization problems, for which the
achievement of the global minimum is ensured when the number of iterations
increases indefinitely, the limit value of the ratio Q(n+ 1)=Q(n) allows to solve
the efficiency comparison between repeated trials and single extended search.
In the opposite case (uncertain problems) a general theoretical result asserts the
superiority of consecutive searches.

The detailed analysis of three optimization algorithms (pure random search,
grid search and random walk), whose evolution is independent of the cost function
to be minimized has allowed to obtain a first validation of the theoretical approach
employed. The procedure used for the efficiency evaluation of repeated trials has
achieved in all the cases the correct expression for the non-convergence probability
Q(n) and can be applied in the study of other more complex optimization problems.
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